PPARα: energy combustion, hypolipidemia, inflammation and cancer
نویسندگان
چکیده
The peroxisome proliferator-activated receptor alpha (PPARalpha, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARalpha in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARalpha agonists. For example, substrates involved in fatty acid oxidation can function as PPARalpha ligands. PPARalpha serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARalpha modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal beta-oxidation and microsomal omega-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARalpha by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARalpha requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.
منابع مشابه
Pleiotropic Actions of Peroxisome Proliferator-Activated Receptors (PPARs) in Dysregulated Metabolic Homeostasis, Inflammation and Cancer: Current Evidence and Future Perspectives
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) have demonstrated a lot of important effects in the regulation of glucose and lipid metabolism and in the correct functioning of adipose tissue. Recently, many studies have evaluated a possible effect of PPARs on tumor cells. The purpose of this review is to describe the effects of PPARs, their action and their future prospective; ...
متن کاملPPAR-alpha: a novel target in pancreatic cancer
Background: Current targeted therapies in pancreatic cancer have been ineffective. The tumor stroma, including intraand peri-tumoral inflammation and fibrosis, is increasingly implicated in pancreatic cancer. Pancreatic cancer is characterized by a highly fibrotic tumor environment resulting in stromal resistance to chemotherapy. Peroxisome proliferator-activated receptor-alpha (PPARα), a ligan...
متن کاملPPARα modulates gene expression profiles of mitochondrial energy metabolism in oral tumorigenesis
Metabolic reprogramming plays a crucial role in the development of cancer. The aim of this study was to explore the effect of fenofibrate, an agonist of peroxisome proliferator-activated receptor alpha (PPARα), on gene expression profiles of mitochondrial energy metabolism. Our results showed that PPARα expression was negatively correlated with tumor progression in an oral cancer mouse model. A...
متن کاملPeroxisome Proliferator-Activated Receptor Alpha Target Genes
The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated...
متن کاملPRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex
The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this compl...
متن کامل